Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Luter 345 Experiments
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
PMT and Electronics Setup
(section)
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Get shortened URL
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Gain Matching== The power supply used in this project is the CAEN 4-channel Programmable Power Supply. The user should be aware that Channel 0 corresponds to Tube 1, Channel 1 to Tube 2, Channel 2 to Tube 3, and Channel 3 to Tube 4. To operate the power supply, the user must first select the desired channel. After selecting the channel, the user should turn the knob until the "VSET" option is displayed. Once "VSET" is selected, the voltage must be set to at least 1200V, as anything lower will cause the output to drop below the threshold. The oscilloscope will display the PMT output for each tube. The user must set a trigger value on the oscilloscope. Once the trigger is set, it must not be changed, as altering it will invalidate all previously recorded measurements. Next, turn the dial labeled "Scale" until the PMT output is large enough to easily observe the mV value (for most of these, we used 200 mV). Record the mV value by measuring the wavelength using the tick marks on the monitor. For example, referring to Figure 2 below, the resulting PMT output is 2500 mV based on the tick marks. [[File:LogicPulse2.png|center|frame|Figure 2]] [[File:Figure_1.png|center|frame|Figure 3]] This is determined by counting from the crest to the trough of the waveform. After that, continue increasing the voltage in increments of 100V. Create a graph to plot the voltages as shown in Figure 3 above. The voltage (V) should be recorded on the x-axis, and the output voltage (mV) should be plotted on the y-axis. Continue this process until the input voltage reaches 2600V. The slope of the graph should begin to plateau at higher voltages (we observed this plateau between 800V and 1800V). Repeat this process for tubes 1, 2, and 3.
Summary:
Please note that all contributions to Luter 345 Experiments may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Luter 345 Experiments:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)