Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Luter 345 Experiments
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Theory
(section)
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Get shortened URL
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== A Starting Estimation from First Principles == [[File:KaterPendulum.png|thumb|300px]] If we know the geometry and make up of the pendulum with a reasonable degree of accuracy, we are able to calculate where the small mass should be position so that it will produce the same period in the SMU and SMD orientation. === Variable Definitions === : <math>M \rightarrow</math> weight of large mass : <math>m \rightarrow</math> weight of small mass : <math>M_{bar} \rightarrow</math> weight of bar : <math>M_{T} = M + m + M_{bar} \rightarrow</math> total weight : <math>L_{bar} \rightarrow</math> length of bar : <math>g \rightarrow</math> gravity : <math>R_m \rightarrow</math> radius of small mass : <math>R_M \rightarrow</math> radius of large mass : <math>\mathbb{R} \rightarrow</math> radius of gyration : <math>\mathbb{I} \rightarrow</math> moment of inertia === Equation of Center of Mass === : <math>x = \frac{M l_1 - m l_2}{M + m + M_{bar}}</math> === Equations from the Pendulum Measurements === : <math>D = h_1 + h_2</math> : <math>h_2 - x = \frac{D}{2}</math> : <math>h_1 + x = \frac{D}{2}</math> Combining these equations results in: : <math>x = \frac{h_2 - h_1}{2}</math> === Equations of Period and Moment of Inertia === : <math>T_i^2 = \frac{4\pi^2}{g} \left( \frac{\mathbb{I}_i}{M_{T} h_i} \right)</math> : <math>\mathbb{I}_i = M_T \left( \R^2 + h_i^2 \right)</math> : <math>T_i^2 = \frac{4\pi^2}{g} \left( \frac{h_i^2+\R^2}{h_i} \right)</math> if <math>T_1 = T_2</math> then: : <math>\frac{h_1^2+\mathbb{R}^2}{h_1} = \frac{h_2^2+\mathbb{R}^2}{h_2}</math> : <math>h_1 h_2 = \mathbb{R}^2</math> : <math>\mathbb{I}_{cm} = \mathbb{R}^2 \left( M_T \right)</math> : <math>\mathbb{I}_{cm}^{sys} = \mathbb{I}_{M}^{cm} + \mathbb{I}_{m}^{cm} + \mathbb{I}_{bar}^{cm}</math> : <math>\mathbb{I}_{M}^{cm} = \frac{1}{2} M R_M^2 + M\left( l_1 - x \right)^2</math> : <math>\mathbb{I}_{m}^{cm} = \frac{1}{2} m R_m^2 + m\left( l_2 + x \right)^2</math> : <math>\mathbb{I}_{M}^{bar} = \mathbb{I}_{bar} + M_{bar} x^2</math> : <math>\mathbb{I}_{bar} = \frac{1}{12} M_{bar} L^2</math> All of which result in: : <math>h_1 h_2 = \frac{1}{M+m+M_{bar}} \left[ \frac{1}{2} M R_M^2 + M\left( l_1 - x \right)^2 + \frac{1}{2} m R_m^2 + m\left( l_2 + x \right)^2 + \frac{1}{12} M_{bar} L^2 + M_{bar} x^2 \right]</math> This is a somewhat difficult equation to solve. However, with the power and speed of modern computing, we don't have to. The following is a piece of code that finds a solution iteratively. === Iterative Solution === <syntaxhighlight lang="cpp"> #include <iostream> #include <TMath.h> void solve() { // Author: Edward J. Brash TCanvas *c1 = new TCanvas("c1","Kater's Pendulum",800,800); c1->SetFillColor(42); c1->SetGrid(); double x, M, m, Mbar, l1, h1, h2, D, L, rhs, lhs, Icm; double l2[1000],t1[1000],t2[1000]; double g=9.810; double Pi=3.14159265; M=1.35928; m=0.72705; Mbar=2.90; D=0.9990; L=1.523; l1=D/2.0+0.0135+0.047523; double diff=1.0e99; double olddiff=1.0e99; int index=0; for(int i=0; i<1000; i++){ l2[i]=0.500+(i/1000.0)*0.250; x=(M*l1-m*l2[i])/(M+m+Mbar); h2=D/2.0+x; h1=D/2.0-x; rhs=h1*h2; Icm=1.0/12.0*Mbar*L*L+Mbar*x*x+M*(l1-x)*(l1-x)+m*(l2[i]+x)*(l2[i]+x); lhs=Icm/(M+m+Mbar); diff = rhs-lhs; if (fabs(diff)<olddiff){olddiff=diff;index=i;} t1[i]=2*Pi*sqrt((h1*h1+lhs)/(g*h1)); t2[i]=2*Pi*sqrt((h2*h2+lhs)/(g*h2)); cout << l2[i] << " " << t1[i] << " " << t2[i] << endl; //cout << "i = "<<i<<" l2 = "<<l2[i]<<" rhs = "<<rhs<<" lhs = "<<lhs<<endl; } cout << "L2 position = " << l2[index] << " L1 position = " << l1 << endl; cout << "Predicted period T = " << t1[index]<< endl; TGraph *gra = new TGraph(1000,l2,t1); TGraph *grb = new TGraph(1000,l2,t2); gra->Draw("AP"); grb->Draw("P"); c1->Update(); c1->GetFrame()->SetFillColor(21); c1->GetFrame()->SetBorderSize(12); c1->Modified(); } </syntaxhighlight>
Summary:
Please note that all contributions to Luter 345 Experiments may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Luter 345 Experiments:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)